Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
J Agric Food Chem ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602484

RESUMO

Rapeseed (Brassica napus L.) has the ability of selenium (Se) enrichment. Identification of selenides in Se-rich rapeseed products will promote the development and utilization of high value. By optimizing the Se species extraction process (protease type, extraction reagent, enzyme sample ratio, extraction time, etc.) and chromatographic column, an efficient, stable, and accurate method was established for the identification of Se species and content in rapeseed seedlings and flowering stalks, which were cultured by inorganic Se hydroponics. Five Se compounds, including selenocystine (SeCys2), methylselenocysteine (MeSeCys), selenomethionine (SeMet), selenite (SeIV), and selenate (SeVI) were qualitatively and quantitatively identified. Organoselenium was absolutely dominant in both seedlings and flowering stalks among the detected rapeseed varieties, with 64.18-90.20% and 94.38-98.47%, respectively. Further, MeSeCys, a highly active selenide, predominated in rapeseed flowering stalks with a proportion of 56.36-72.93% and a content of 1707.3-5030.3 µg/kg. This study provides a new source of MeSeCys supplementation for human Se fortification.

2.
Radiology ; 310(3): e230397, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38441089

RESUMO

Background Translocator protein (TSPO) PET has been used to visualize microglial activation in neuroinflammation and is a potential imaging tool for detecting autoimmune encephalitis (AIE). Purpose To compare the detection rate between TSPO radioligand fluorine 18 (18F) DPA-714 PET and conventional MRI and assess the relationship between 18F-DPA-714 uptake and clinical features in participants with AIE. Materials and Methods Healthy volunteers and patients with AIE were enrolled in this prospective study between December 2021 and April 2023. All participants underwent hybrid brain 18F-DPA-714 PET/MRI and antibody testing. Modified Rankin scale scoring and AIE-related symptoms were assessed in participants with AIE. Positive findings were defined as intensity of 18F-DPA-714 uptake above a threshold of the mean standardized uptake value ratio (SUVR) plus 2 SD inside the corresponding brain regions of healthy controls. The McNemar test was used to compare the positive detection rate between the two imaging modalities; the independent samples t test was used to compare continuous variables; and correlation with Bonferroni correction was used to assess the relationship between 18F-DPA-714 uptake and clinical features. Results A total of 25 participants with AIE (mean age, 39.24 years ± 19.03 [SD]) and 10 healthy controls (mean age, 28.70 years ± 5.14) were included. The positive detection rate of AIE was 72% (18 of 25) using 18F-DPA-714 PET compared to 44% (11 of 25) using conventional MRI, but the difference was not statistically significant (P = .065). Participants experiencing seizures exhibited significantly higher mean SUVR in the entire cortical region than those without seizures (1.23 ± 0.21 vs 1.15 ± 0.18; P = .003). Of the 13 participants with AIE who underwent follow-up PET/MRI, 11 (85%) demonstrated reduced uptake of 18F-DPA-714 accompanied by relief of symptoms after immunosuppressive treatment. Conclusion 18F-DPA-714 PET has potential value in supplementing MRI for AIE detection. Clinical trial registration no. NCT05293405 © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Zaharchuk in this issue.


Assuntos
Doenças Autoimunes do Sistema Nervoso , Encefalite , Doença de Hashimoto , Microglia , Pirazóis , Pirimidinas , Humanos , Adulto , Estudos Prospectivos , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Convulsões , Receptores de GABA
3.
Theor Appl Genet ; 137(2): 38, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294547

RESUMO

KEY MESSAGE: We detected the major QTL- qSR.A07, which regulated stem strength and was fine-mapped to 490 kb. BnaA07G0302800ZS and BnaA07G0305700ZS as the candidate functional genes were identified at qSR.A07 locus. The stem's mechanical properties reflect its ability to resist lodging. In rapeseed (Brassica napus L.), although stem lodging negatively affects yield and generates harvesting difficulties, the molecular regulation of stem strength remains elusive. Hence, this study aimed to unravel the main loci and molecular mechanisms governing rapeseed stem strength. A mapping population consisting of 267 RILs (recombinant inbred lines) was developed from the crossed between ZS11 (high stem strength) and 4D122 (low stem strength), and two mechanical properties of stems including stem breaking strength and stem rind penetrometer resistance were phenotyped in four different environments. Four pleiotropic QTLs that were stable in at least two environments were detected. qSR.A07, the major one, was fine-mapped to a 490 kb interval between markers SA7-2711 and SA7-2760 on chromosome 7. It displayed epistatic interaction with qRPR.A09-2. Comparative transcriptome sequencing and analysis unveiled methionine/S-adenosylmethionine cycle (Met/SAM cycle), cytoskeleton organization, sulfur metabolism and phenylpropanoid biosynthesis as the main pathways associated with high stem strength. Further, we identified two candidate genes, BnaA07G0302800ZS and BnaA07G0305700ZS, at qSR.A07 locus. Gene sequence alignment identified a number of InDels, SNPs and amino acid variants in sequences of these genes between ZS11 and 4D122. Finally, based on these genetic variants, we developed three SNP markers of these genes to facilitate future genetic selection and functional studies. These findings offer important genetic resources for the molecular-assisted breeding of novel rapeseed stem lodging-resistant varieties.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Transcriptoma , Mapeamento Cromossômico , Locos de Características Quantitativas
4.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38069438

RESUMO

As plant-specific transcription factors, the TIFY family genes are involved in the responses to a series of biotic and abiotic stresses and the regulation of the development of multiple organs. To explore the potential roles of the TIFY gene family in shoot branching, which can shape plant architecture and finally determine seed yield, we conducted comprehensive genome-wide analyses of the TIFY gene family in Brassica napus. Here, HMMER search and BLASTp were used to identify the TIFY members. A total of 70 TIFY members were identified and divided into four subfamilies based on the conserved domains and motifs. These TIFY genes were distributed across 19 chromosomes. The predicted subcellular localizations revealed that most TIFY proteins were located in the nucleus. The tissue expression profile analyses indicated that TIFY genes were highly expressed in the stem, flower bud, and silique at the transcriptional level. High-proportioned activation of the dormant axillary buds on stems determined the branch numbers of rapeseed plants. Here, transcriptome analyses were conducted on axillary buds in four sequential developing stages, that is, dormant, temporarily dormant, being activated, and elongating (already activated). Surprisingly, the transcription of the majority of TIFY genes (65 of the 70) significantly decreased on the activation of buds. GO enrichment analysis and hormone treatments indicated that the transcription of TIFY family genes can be strongly induced by jasmonic acid, implying that the TIFY family genes may be involved in the regulation of jasmonic acid-mediated branch development. These results shed light on the roles of TIFY family genes in plant architecture.


Assuntos
Brassica napus , Brassica napus/metabolismo , Estudo de Associação Genômica Ampla , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Família Multigênica , Regulação da Expressão Gênica de Plantas , Filogenia
5.
Biotechnol Biofuels Bioprod ; 16(1): 149, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37789456

RESUMO

BACKGROUND: Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. RESULTS: Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait-SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24-24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. CONCLUSION: 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.

6.
Nutrients ; 15(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836473

RESUMO

Selenium is an essential micronutrient that plays a crucial role in maintaining human health. Selenium deficiency is seriously associated with various diseases such as Keshan disease, Kashin-Beck disease, cataracts, and others. Conversely, selenium supplementation has been found to have multiple effects, including antioxidant, anti-inflammatory, and anticancer functions. Compared with inorganic selenium, organic selenium exhibits higher bioactivities and a wider range of safe concentrations. Consequently, there has been a significant development of selenium-enriched foods which contain large amounts of organic selenium in order to improve human health. This review summarizes the physiological role and metabolism of selenium, the development of selenium-enriched foods, the physiological functions of selenium-enriched foods, and provides an analysis of total selenium and its species in selenium-enriched foods, with a view to laying the foundation for selenium-enriched food development.


Assuntos
Doença de Kashin-Bek , Selênio , Oligoelementos , Humanos , Alimentos Fortificados , Antioxidantes , Doença de Kashin-Bek/metabolismo
7.
PLoS Pathog ; 19(9): e1011620, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37656756

RESUMO

LGP2 is a RIG-I-like receptor (RLR) known to bind and recognize the intermediate double-stranded RNA (dsRNA) during virus infection and to induce type-I interferon (IFN)-related antiviral innate immune responses. Here, we find that LGP2 inhibits Zika virus (ZIKV) and tick-borne encephalitis virus (TBEV) replication independent of IFN induction. Co-immunoprecipitation (Co-IP) and confocal immunofluorescence data suggest that LGP2 likely colocalizes with the replication complex (RC) of ZIKV by interacting with viral RNA-dependent RNA polymerase (RdRP) NS5. We further verify that the regulatory domain (RD) of LGP2 directly interacts with RdRP of NS5 by biolayer interferometry assay. Data from in vitro RdRP assays indicate that LGP2 may inhibit polymerase activities of NS5 at pre-elongation but not elongation stages, while an RNA-binding-defective LGP2 mutant can still inhibit RdRP activities and virus replication. Taken together, our work suggests that LGP2 can inhibit flavivirus replication through direct interaction with NS5 protein and downregulates its polymerase pre-elongation activities, demonstrating a distinct role of LGP2 beyond its function in innate immune responses.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Infecção por Zika virus , Zika virus , Humanos , RNA Polimerase Dependente de RNA/genética , Nucleotidiltransferases , RNA de Cadeia Dupla
8.
Front Plant Sci ; 14: 1194914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546248

RESUMO

Root system architecture (RSA) is the primary predictor of nutrient intake and significantly influences potassium utilization efficiency (KUE). Uncertainty persists regarding the genetic factors governing root growth in rapeseed. The root transcriptome analysis reveals the genetic basis driving crop root growth. In this study, RNA-seq was used to profile the overall transcriptome in the root tissue of 20 Brassica napus accessions with high and low KUE. 71,437 genes in the roots displayed variable expression profiles between the two contrasting genotype groups. The 212 genes that had varied expression levels between the high and low KUE lines were found using a pairwise comparison approach. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) functional classification analysis revealed that the DEGs implicated in hormone and signaling pathways, as well as glucose, lipid, and amino acid metabolism, were all differently regulated in the rapeseed root system. Additionally, we discovered 33 transcription factors (TFs) that control root development were differentially expressed. By combining differential expression analysis, weighted gene co-expression network analysis (WGCNA), and recent genome-wide association study (GWAS) results, four candidate genes were identified as essential hub genes. These potential genes were located fewer than 100 kb from the peak SNPs of QTL clusters, and it was hypothesized that they regulated the formation of the root system. Three of the four hub genes' homologs-BnaC04G0560400ZS, BnaC04G0560400ZS, and BnaA03G0073500ZS-have been shown to control root development in earlier research. The information produced by our transcriptome profiling could be useful in revealing the molecular processes involved in the growth of rapeseed roots in response to KUE.

10.
Cell Rep ; 42(5): 112489, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37167063

RESUMO

Upon recognizing danger signals produced by virally infected neurons, macrophages in the central nervous system (CNS) secrete multiple inflammatory cytokines to accelerate neuron apoptosis. The understanding is limited about which key effectors regulate macrophage-neuron crosstalk upon infection. We have used neurotropic-virus-infected murine models to identify that vascular endothelial growth factor receptor 3 (VEGFR-3) is upregulated in the CNS macrophages and that virally infected neurons secrete the ligand VEGF-C. When cultured with VEGF-C-containing supernatants from virally infected neurons, VEGFR-3+ macrophages suppress tumor necrosis factor α (TNF-α) secretion to reduce neuron apoptosis. Vegfr-3ΔLBD/ΔLBD (deletion of ligand-binding domain in myeloid cells) mice or mice treated with the VEGFR-3 kinase inhibitor exacerbate the severity of encephalitis, TNF-α production, and neuron apoptosis post Japanese encephalitis virus (JEV) infection. Activating VEGFR-3 or blocking TNF-α can reduce encephalitis and neuronal damage upon JEV infection. Altogether, we show that the inducible VEGF-C/VEGFR-3 module generates protective crosstalk between neurons and macrophages to alleviate CNS viral infection.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Camundongos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator C de Crescimento do Endotélio Vascular/metabolismo , Ligantes , Fator A de Crescimento do Endotélio Vascular/metabolismo , Encefalite Japonesa/metabolismo , Encefalite Japonesa/patologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Neurônios/metabolismo , Macrófagos/metabolismo
11.
Plant Biotechnol J ; 21(7): 1479-1495, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37170717

RESUMO

Heterosis refers to the better performance of cross progeny compared with inbred parents, and its utilization contributes greatly to agricultural production. Several hypotheses have been proposed to explain heterosis mainly including dominance, over-dominance (or pseudo-overdominance) and epistasis. However, systematic dissection and verification of these hypotheses are rarely documented. Here, comparison of heterosis level across different traits showed that the strong heterosis of composite traits (such as yield) could be attributed to the multiplicative effects of moderate heterosis of component traits, whether at the genome or locus level. Yield heterosis was regulated by a complex trait-QTL network that was characterized by obvious centre-periphery structure, hub QTL, complex up/downstream and positive/negative feedback relationships. More importantly, we showed that better-parent heterosis on yield could be produced in a cross of two near-isogenic lines by the pyramiding and complementation of two major heterotic QTL showing partial-dominance on yield components. The causal gene (BnaA9.CYP78A9) of QC14 was identified, and its heterotic effect results from the heterozygous status of a CACTA-like transposable element in its upstream regulatory region, which led to partial dominance at expression and auxin levels, thus resulting in non-additive expression of downstream responsive genes involved in cell cycle and proliferation, eventually leading to the heterosis of cell number. Taken together, the results at the phenotypic, genetic and molecular levels were highly consistent, which demonstrated that the pyramiding effect of heterotic QTL and the multiplicative effect of individual component traits could well explain substantial parts of yield heterosis in oilseed rape. These results provide in-depth insights into the genetic architecture and molecular mechanism of yield heterosis.


Assuntos
Vigor Híbrido , Locos de Características Quantitativas , Vigor Híbrido/genética , Mapeamento Cromossômico , Locos de Características Quantitativas/genética , Fenótipo , Heterozigoto
12.
Mult Scler Relat Disord ; 75: 104750, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37196386

RESUMO

Background Annualized Relapse Rate (ARR) is one of the most important indicators of disease progression in patients with Multiple Sclerosis (MS). However, imaging markers that can effectively predict ARR are currently unavailable. In this study, we developed a deep learning-based method for the automated extraction of radiomics features from Positron Emission Computed Tomography (PET) and Magnetic Resonance (MR) images to predict ARR in patients with MS. Methods Twenty-five patients with a definite diagnosis of Relapsing-Remitting MS (RRMS) were enrolled in this study. We designed a multi-branch fully convolutional neural network to segment lesions from PET/MR images. After that, radiomics features were extracted from the obtained lesion volume of interest. Three feature selection methods were used to retain features highly correlated with ARR. We combined four classifiers with different feature selection methods to form twelve models for ARR classification. Finally, the model with the best performance was chosen. Results Our network achieved precise automatic lesion segmentation with a Dice Similarity Coefficient (DSC) of 0.81 and a precision of 0.86. Radiomics features from lesions filtered by Recursive Feature Elimination (RFE) achieved the best performance in the Support Vector Machines (SVM) classifier. The classification model performance was best when radiomics from both PET and MR were combined to predict ARR, with high accuracy at 0.88 and Area Under the ROC curves (AUC) at 0.96, which outperformed MR or PET-based model and clinical indicators-based model. Conclusion Our automatic segmentation masks can replace manual ones with excellent performance. Furthermore, the deep learning and PET/MR radiomics-based model in our research is an effective tool in assisting ARR classification of MS patients.


Assuntos
Aprendizado Profundo , Esclerose Múltipla , Humanos , Esclerose Múltipla/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons , Progressão da Doença , Doença Crônica , Estudos Retrospectivos
13.
Front Plant Sci ; 14: 1144892, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229131

RESUMO

Stem lodging resistance is a serious problem impairing crop yield and quality. ZS11 is an adaptable and stable yielding rapeseed variety with excellent resistance to lodging. However, the mechanism regulating lodging resistance in ZS11 remains unclear. Here, we observed that high stem mechanical strength is the main factor determining the superior lodging resistance of ZS11 through a comparative biology study. Compared with 4D122, ZS11 has higher rind penetrometer resistance (RPR) and stem breaking strength (SBS) at flowering and silique stages. Anatomical analysis shows that ZS11 exhibits thicker xylem layers and denser interfascicular fibrocytes. Analysis of cell wall components suggests that ZS11 possessed more lignin and cellulose during stem secondary development. By comparative transcriptome analysis, we reveal a relatively higher expression of genes required for S-adenosylmethionine (SAM) synthesis, and several key genes (4-COUMATATE-CoA LIGASE, CINNAMOYL-CoA REDUCTASE, CAFFEATE O-METHYLTRANSFERASE, PEROXIDASE) involved in lignin synthesis pathway in ZS11, which support an enhanced lignin biosynthesis ability in the ZS11 stem. Moreover, the difference in cellulose may relate to the significant enrichment of DEGs associated with microtubule-related process and cytoskeleton organization at the flowering stage. Protein interaction network analysis indicate that the preferential expression of several genes, such as LONESOME HIGHWAY (LHW), DNA BINDING WITH ONE FINGERS (DOFs), WUSCHEL HOMEOBOX RELATED 4 (WOX4), are related to vascular development and contribute to denser and thicker lignified cell layers in ZS11. Taken together, our results provide insights into the physiological and molecular regulatory basis for the formation of stem lodging resistance in ZS11, which will greatly promote the application of this superior trait in rapeseed breeding.

14.
Plant Physiol ; 192(1): 274-292, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36746783

RESUMO

Drought stress poses a serious threat to global agricultural productivity and food security. Plant resistance to drought is typically accompanied by a growth deficit and yield penalty. Herein, we report a previously uncharacterized, dicotyledon-specific gene, Stress and Growth Interconnector (SGI), that promotes growth during drought in the oil crop rapeseed (Brassica napus) and the model plant Arabidopsis (Arabidopsis thaliana). Overexpression of SGI conferred enhanced biomass and yield under water-deficient conditions, whereas corresponding CRISPR SGI mutants exhibited the opposite effects. These attributes were achieved by mediating reactive oxygen species (ROS) homeostasis while maintaining photosynthetic efficiency to increase plant fitness under water-limiting environments. Further spatial-temporal transcriptome profiling revealed dynamic reprogramming of pathways for photosynthesis and stress responses during drought and the subsequent recovery. Mechanistically, SGI represents an intrinsically disordered region-containing protein that interacts with itself, catalase isoforms, dehydrins, and other drought-responsive positive factors, restraining ROS generation. These multifaceted interactions stabilize catalases in response to drought and facilitate their ROS-scavenging activities. Taken altogether, these findings provide insights into currently underexplored mechanisms to circumvent trade-offs between plant growth and stress tolerance that will inform strategies to breed climate-resilient, higher yielding crops for sustainable agriculture.


Assuntos
Arabidopsis , Secas , Espécies Reativas de Oxigênio/metabolismo , Melhoramento Vegetal , Arabidopsis/metabolismo , Água/metabolismo , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
15.
Emerg Microbes Infect ; 12(1): 2174777, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36715162

RESUMO

Zika virus (ZIKV) infections are typically asymptomatic but cause severe neurological complications (e.g. Guillain-Barré syndrome in adults, and microcephaly in newborns). There are currently no specific therapy or vaccine options available to prevent ZIKV infections. Temporal gene expression profiles of ZIKV-infected human brain microvascular endothelial cells (HBMECs) were used in this study to identify genes essential for viral replication. These genes were then used to identify novel anti-ZIKV agents and validated in publicly available data and functional wet-lab experiments. Here, we found that ZIKV effectively evaded activation of immune response-related genes and completely reprogrammed cellular transcriptional architectures. Knockdown of genes, which gradually upregulated during viral infection but showed distinct expression patterns between ZIKV- and mock infection, discovered novel proviral and antiviral factors. One-third of the 74 drugs found through signature-based drug repositioning and cross-reference with the Drug Gene Interaction Database (DGIdb) were known anti-ZIKV agents. In cellular assays, two promising antiviral candidates (Luminespib/NVP-AUY922, L-161982) were found to reduce viral replication without causing cell toxicity. Overall, our time-series transcriptome-based methods offer a novel and feasible strategy for antiviral drug discovery. Our strategies, which combine conventional and data-driven analysis, can be extended for other pathogens causing pandemics in the future.


Assuntos
Infecção por Zika virus , Zika virus , Recém-Nascido , Humanos , Zika virus/fisiologia , Transcriptoma , Células Endoteliais/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico , Replicação Viral
16.
Front Plant Sci ; 13: 1053459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388516

RESUMO

Branch architecture is an important factor influencing rapeseed planting density, mechanized harvest, and yield. However, its related genes and regulatory mechanisms remain largely unknown. In this study, branch angle (BA) and branch dispersion degree (BD) were used to evaluate branch architecture. Branch angle exhibited a dynamic change from an increase in the early stage to a gradual decrease until reaching a stable state. Cytological analysis showed that BA variation was mainly due to xylem size differences in the vascular bundle of the branch junction. The phenotypic analysis of 327 natural accessions revealed that BA in six environments ranged from 24.3° to 67.9°, and that BD in three environments varied from 4.20 cm to 21.4 cm, respectively. A total of 115 significant loci were detected through association mapping in three models (MLM, mrMLM, and FarmCPU), which explained 0.53%-19.4% of the phenotypic variations. Of them, 10 loci were repeatedly detected in different environments and models, one of which qBAD.A03-2 was verified as a stable QTL using a secondary segregation population. Totally, 1066 differentially expressed genes (DEGs) were identified between branch adaxial- and abaxial- sides from four extremely large or small BA/BD accessions through RNA sequencing. These DEGs were significantly enriched in the pathways related to auxin biosynthesis and transport as well as cell extension such as indole alkaloid biosynthesis, other glycan degradation, and fatty acid elongation. Four known candidate genes BnaA02g16500D (PIN1), BnaA03g10430D (PIN2), BnaC03g06250D (LAZY1), and BnaC06g20640D (ARF17) were identified by both GWAS and RNA-seq, all of which were involved in regulating the asymmetric distribution of auxins. Our identified association loci and candidate genes provide a theoretical basis for further study of gene cloning and genetic improvement of branch architecture.

17.
Front Plant Sci ; 13: 994666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172562

RESUMO

Plants rely on root systems for nutrient uptake from soils. Marker-assisted selection helps breeders to select desirable root traits for effective nutrient uptake. Here, 12 root and biomass traits were investigated at the seedling stage under low nitrogen (LN), low phosphorus (LP), and low potassium (LK) conditions, respectively, in a recombinant inbred line (RIL) population, which was generated from Brassica napus L. Zhongshuang11 and 4D122 with significant differences in root traits and nutrient efficiency. Significant differences for all the investigated traits were observed among RILs, with high heritabilities (0.43-0.74) and high correlations between the different treatments. Quantitative trait loci (QTL) mapping identified 57, 27, and 36 loci, explaining 4.1-10.9, 4.6-10.8, and 4.9-17.4% phenotypic variances under LN, LP, and LK, respectively. Through QTL-meta analysis, these loci were integrated into 18 significant QTL clusters. Four major QTL clusters involved 25 QTLs that could be repeatedly detected and explained more than 10% phenotypic variances, including two NPK-common and two specific QTL clusters (K and NK-specific), indicating their critical role in cooperative nutrients uptake of N, P, and K. Moreover, 264 genes within the four major QTL clusters having high expressions in roots and SNP/InDel variations between two parents were identified as potential candidate genes. Thirty-eight of them have been reported to be associated with root growth and development and/or nutrient stress tolerance. These key loci and candidate genes lay the foundation for deeper dissection of the NPK starvation response mechanisms in B. napus.

18.
Biotechnol Biofuels Bioprod ; 15(1): 93, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36096884

RESUMO

BACKGROUND: JAZ subfamily plays crucial roles in growth and development, stress, and hormone responses in various plant species. Despite its importance, the structural and functional analyses of the JAZ subfamily in Brassica napus are still limited. RESULTS: Comparing to the existence of 12 JAZ genes (AtJAZ1-AtJAZ12) in Arabidopsis, there are 28, 31, and 56 JAZ orthologues in the reference genome of B. rapa, B. oleracea, and B. napus, respectively, in accordance with the proven triplication events during the evolution of Brassicaceae. The phylogenetic analysis showed that 127 JAZ proteins from A. thaliana, B. rapa, B. oleracea, and B. napus could fall into five groups. The structure analysis of all 127 JAZs showed that these proteins have the common motifs of TIFY and Jas, indicating their conservation in Brassicaceae species. In addition, the cis-element analysis showed that the main motif types are related to phytohormones, biotic and abiotic stresses. The qRT-PCR of the representative 11 JAZ genes in B. napus demonstrated that different groups of BnJAZ individuals have distinct patterns of expression under normal conditions or treatments with distinctive abiotic stresses and phytohormones. Especially, the expression of BnJAZ52 (BnC08.JAZ1-1) was significantly repressed by abscisic acid (ABA), gibberellin (GA), indoleacetic acid (IAA), polyethylene glycol (PEG), and NaCl treatments, while induced by methyl jasmonate (MeJA), cold and waterlogging. Expression pattern analysis showed that BnC08.JAZ1-1 was mainly expressed in the vascular bundle and young flower including petal, pistil, stamen, and developing ovule, but not in the stem, leaf, and mature silique and seed. Subcellular localization showed that the protein was localized in the nucleus, in line with its orthologues in Arabidopsis. Overexpression of BnC08.JAZ1-1 in Arabidopsis resulted in enhanced seed weight, likely through regulating the expression of the downstream response genes involved in the ubiquitin-proteasome pathway and phospholipid metabolism pathway. CONCLUSIONS: The systematic identification, phylogenetic, syntenic, and expression analyses of BnJAZs subfamily improve our understanding of their roles in responses to stress and phytohormone in B. napus. In addition, the preliminary functional validation of BnC08.JAZ1-1 in Arabidopsis demonstrated that this subfamily might also play a role in regulating seed weight.

19.
Front Plant Sci ; 13: 999790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36176675

RESUMO

Oilseed rape is one of the world's largest oil and industrial crops, providing humans with various products, such as vegetable oil and biofuel. Ovules are the direct precursors of seeds, and ovule number per ovary (ONPO) largely determines seed number per fruit that affects both yield and fitness of seed crops. The ONPO shows wide variation in oilseed rape, whereas the underlying genes and mechanisms are poorly known. The present study performed the genetic, physiological and transcriptomic analyses of ovule number per ovary using an association panel and the extreme lines. The ONPO of 327 accessions planted in four environments showed a large variation from 19.2 to 43.8, indicating a great potential for the further genetic improvement of ovule number. The genome-wide association study (GWAS) identified a total of 43 significant SNP markers. Further, these SNPs were integrated into 18 association loci, which were distributed on chromosomes A01, A03, A06, A07, A09, C01, C03, C06, C07, and C09, explaining 4.3-11.5% of the phenotypic variance. The ONPO decreased as their appearance order on the inflorescence and was associated with the level of several types of endogenous phytohormones but not related to leaf area and photosynthetic rate. Comparative transcriptomic analysis identified a total of 4,449 DEGs enriched in 30 classes, including DNA, RNA, protein, signaling, transport, development, cell wall, lipid metabolism, and secondary metabolism. Nearly half of DEGs were involved in the known pathways in regulating ovule number, of which 12 were homologous to know ovule number regulating genes, indicating a strong link between the identified DEGs and ovule number. A total of 73 DEGs were located within the genomic regions of association loci, of which six were identified as candidates based on functional annotation. These results provide useful information for the further genetic improvement of ovule and seed number in oilseed rape.

20.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887301

RESUMO

An excellent root system is responsible for crops with high nitrogen-use efficiency (NUE). The current study evaluated the natural variations in 13 root- and biomass-related traits under a low nitrogen (LN) treatment in a rapeseed association panel. The studied traits exhibited significant phenotypic differences with heritabilities ranging from 0.53 to 0.66, and most of the traits showed significant correlations with each other. The genome-wide association study (GWAS) found 51 significant and 30 suggestive trait-SNP associations that integrated into 14 valid quantitative trait loci (QTL) clusters and explained 5.7-21.2% phenotypic variance. In addition, RNA sequencing was performed at two time points to examine the differential expression of genes (DEGs) between high and low NUE lines. In total, 245, 540, and 399 DEGs were identified as LN stress-specific, high nitrogen (HN) condition-specific, and HNLN common DEGs, respectively. An integrated analysis of GWAS, weighted gene co-expression network, and DEGs revealed 16 genes involved in rapeseed root development under LN stress. Previous studies have reported that the homologs of seven out of sixteen potential genes control root growth and NUE. These findings revealed the genetic basis underlying nitrogen stress and provided worthwhile SNPs/genes information for the genetic improvement of NUE in rapeseed.


Assuntos
Brassica napus , Brassica rapa , Biomassa , Brassica napus/metabolismo , Brassica rapa/genética , Mapeamento Cromossômico , Estudo de Associação Genômica Ampla , Nitrogênio/metabolismo , RNA-Seq
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...